تخمین پارامترهای مخزنی با استفاده از داده های چاه پیمایی و بهره گیری از ترکیب شبکه عصبی مصنوعی و الگوریتم بهینه سازی ازدحام ذرات
Authors
Abstract:
پارامترهای ژئومکانیکی و پتروفیزیکی مخزن همانند سرعت موج برشی، تخلخل و تراوایی از جمله پارامترهای مهمی هستند که در شبیهسازی مخازن هیدروکربوری و استراتژیهای اکتشافی نقش موثری ایفا می کنند. اخیراً روشهای هوش مصنوعی بهمنظور پیشبینی این پارامترها با استفاده از دادههای چاه پیمایی بهکاربرده شدهاند. بااینحال پیشبینی ویژگیهای مخازن ناهمگن همواره با دشوارهای بسیاری همراه است و بهسختی پاسخ مناسبی بهدستآمده است. در این مطالعه تلاش شده است تا پارامترهای مخزنی سرعت موج برشی، تخلخل و تراوایی با استفاده از روش نوین ترکیب شبکه عصبی مصنوعی و الگوریتم بهینه سازی ازدحام ذرات (PSO-ANN)، در مخزن هتروژن آسماری میدان منصوری تخمین زده شود. سپس عملکرد این مدل ترکیبی با روش های کلاسیک و مرسوم شبکه عصبی مصنوعی (ANN) و سیستم تطبیقی استنتاج نروفازی (ANFIS) و همچنین روش ترکیب شبکه عصبی مصنوعی و الگوریتم ژنتیک (GA-ANN) مورد مقایسه قرار گرفته است. نتایج نشان دهنده عملکرد بسیار مناسب روش ترکیبی شبکه عصبی مصنوعی و الگوریتم بهینه سازی ازدحام ذرات در تخمین پارامترهای مخزنی است. بنابراین می توان از مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم بهینه سازی ازدحام ذرات به عنوان یک روش قدرتمند در تخمین سایر پارامترهای مخزنی به خصوص در مواقعی که دقت بالای پیش بینی لازم باشد استفاده نمود.
similar resources
بهینه سازی اجتماع ذرات به منظور تخمین سرعت موج برشی از داده های چاه پیمایی
بر پایه ی مطالعات گسترده ای که تاکنون صورت گرفته است، بدون تردید، سرعت موج برشی نقشی اساسی را در ارزیابی مخازن هیدروکربوری ایفا می نماید. بهره گیری از اطلاعات سرعت موج برشی، غالباً این امکان را فراهم می سازد که بتوان اثرات لرزه ای پارامترهایی چون سنگ شناسی، نوع سیال منفذی و فشار منفذی را شناسایی کرد. امّا متأسفانه داده های سرعت موج برشی در بسیاری از میادین موجود نیستند و تخمین آنها به روش...
full textبهینه سازی سبد سهام با استفاده از الگوریتم ازدحام ذرات در تعاریف مختلف اندازه گیری ریسک
این مقاله از الگوریتم ازدحام ذرات برای بهینهیابی سبد دارایی مارکوویتز با توجه به معیارهای متفاوت اندازهگیری ریسک یعنی میانگین واریانس، میانگین نیم- واریانس و میانگین قدر مطلق انحرافات و همچنین محدودیتهای موجود در بازار واقعی مانند "اندازه ثابت تعداد سهام" و "محدودیت خرید" استفاده کرده است. برای بررسی قابلیت حل این مسائل به کمک این الگوریتم، از دادههای واقعی 186 شرکت در بورس اوراق بهادار ت...
full textتخمین عملکرد کمی و کیفی نیشکر با استفاده از شبکه فازی- عصبی تطبیقی بهبود یافته با الگوریتم بهینهسازی ازدحام ذرات
متغیرهای مختلفی بر عملکرد مزارع نیشکر تأثیرگذارند. با بررسی این متغیرها و تعیین میزان اثر هر یک از آنها میتوان به راهکارهایی بهمنظور افزایش بهرهوری مزارع نیشکر دست یافت. امروزه استفاده از یافتههای هوش مصنوعی و داده کاوی برای کمک به پیشبینی تولید محصول مورد توجه قرار گرفته است. هدف از این مقاله، معرفی روش هوشمند سیستم استنتاج فازی- عصبی تطبیقی و ترکیب این تکنیک با الگوریتم بهینهس...
full textارزیابی پتروفیزیکی مخزن هیدروکربوری با استفاده از داده های چاه نگاری و تکنیک شبکه عصبی مصنوعی
full text
بهینه سازی شبکه های آبیاری با استفاده از الگوریتم ازدحام ذرات توسعه یافته و برنامه ریزی خطی
چکیده مسئله انتخاب بهترین آرایش برای قطر لولهها و هد بهینه پمپ طوری که هزینه کل سیستم مینیمم گردد، از خیلی سال قبل توسط مهندسین هیدرولیک مورد توجه بوده است. در این مطالعه از روشهای برنامهریزی خطی عدد صحیح مختلط و الگوریتم ازدحام ذرات تکامل و جهش یافته برای بهینهسازی شبکههای آبیاری تحت فشار استفاده می شود، به گونهای که شبکه انتخابی، شامل 16 لوله و 17 گره میباشد. تابع هدف شامل هزینه ثابت ...
full textMy Resources
Journal title
volume 10 issue 1
pages 96- 109
publication date 2020-05-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023